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Electromagnetic Field Analysis and Calculation
of the Resonance Characteristics
of the Loop-Gap Resonator

MEHRDAD MEHDIZADEH, MEMBER, IEEE, AND T. KORYU ISHII, SENIOR MEMBER, IEEE

Abstract —The electromagnetic field configuration of the loop-gap res-
onator is analyzed and expressions for field distributions are derived. The
method involves solving Maxwell’s equations for the boundary conditions
and matching the internal magnetic fields of the resonator to the evanes-
cent fringing fields by a numerical fitting method. The expressions derived
from this analysis are used in the derivation of equations for the resonant
frequency and the quality factor of the resonator. The computed results are
in good agreement with the measured values for resonant frequency and
quality factors.

I. INTRODUCTION

HE CHARACTERISTICS and applications of the

loop-gap resonator have been discussed in a number
of recent publications [1]--[3]. Attempts to elaborate a field
analysis and derive equations for the resonant frequency
and the quality factor of this type of resonator were made
in [1] and [2]. In the simple analysis in [1], where the
fringing fields are not considered, the equation derived on
the basis of this model gives only a rough estimate of the
resonant frequency compared to measured results. In [2],
the addition of an empirical factor for the fringing capaci-
tance of the gap gives better accuracy. In [3] expressions
for the resonant frequency and quality factor are pre-
sented, where empirical factors for fringing fields are given.
The purpose of this. paper is to theoretically treat the
problem considering both electric and magnetic fringing
fields and to derive more accurate equations for the reso-
nant frequency and the quality factor based on this
analysis. v ,

Fig. 1 shows the electromagnetic field configuration and
the direction of surface currents for a loop-gap resonator.
The electric fields are supported between the two parallel

- surfaces of the gap, and the magnetic fields surround the
loop; thus the conduction current flows circumferentially
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Fig. 1. The electromagnetic field configuration and direction of cur-

rents in a loop-gap resonator.

on the surfaces of the resonator and the shield. The mag-
netic field intensity in the central region and also in the
annular region can be considered to be uniform for small
gap distances. The magnetic fields which are located within
the length of the resonator are termed main magnetic
fields in this paper; the curved magnetic field lines which
are located outside of the resonator length and connect the
field lines of the central and annular regions are called
fringing magnetic fields. o

As shown in Fig. 1, a loop-gap resonator is considered
in this paper with an inner loop radius r,, a gap distance ¢,
a gap width W, and a length Z. The resonator is coaxial
with a shield of radius R and a length much larger than Z.

In Section II the magnetic fringing fields are analyzed.
An equation for the overall balance of electric and mag-
netic stored energies is derived in Section III which leads
to the derivation of an equation for the resonant fre-
quency. In Section IV the developed field distribution
theory is used for the derivation of an expression for the
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Fig. 2. Fringing magnetic field configuration on one end of a loop-gap
resonator.

quality factor, and in Section V a comparison of calculated
and measured results is presented.

II. ANALYSIS OF MAGNETIC FIELD DISTRIBUTION

A detailed view of magnetic fields at one end of a
loop-gap resonator is shown in Fig. 2, where a cylindrical
coordinate system (7, ¢, z) is considered where the origin
of the z coordinate is on the top surface plane of the
resonator. For z < 0, the magnetic field intensities H;, and
— H are defined for the central and the annular region of
the resonator as shown. These fields, which are approxi-
mated to be uniform, are defined as main magnetic fields.
For z > 0 the curved fringing fields are considered to have
components H, and H,, neglecting the angular asymmetry
because of the gap.

In a typical resonator the shield radius is much smaller
than the resonant wavelength; so the fields at z > 0 can be
represented by a summation of evanescent cylindrical TE,
modes within the shield [4], [5]:

< Un
Hz(r’ Z) = Z HOnJO _-R_r)e~agnz
n=1

(1)

(2)

Here J, is the Bessel function of first kind and order zero,

H,, and a,, are the amplitude and the attenuation con-
stant of the nth mode, respectively, and U, is the root of

J7(x)=0. Then
27 A\ .
ap, = _A— \ — 1.

con

= a9, R Ut an s
Hr(r,z) = Z Hon-l—](‘),n—fo'(?r)e ons,

n=1

(3)

The parameter A is the resonance wavelength and A, is
the cutoff wavelength of the nth mode, given by

2aR

con U ‘
On

Considering the first mode, TE,, as dominant, the effect
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of all other modes is taken into account by the two
continuous functions &(r) and §,(r) as factors of the
z-directed and r-directed components of this mode respec-
tively:

H,(r,z) = HyJo(Kr)§,(r)e” (4)
(5)

To determine £,(r) and §,(r), consider the boundary
conditions on the field components. First, as shown in Fig.
2, the magnetic field intensity at the plane z =0 is only
z-directed:

a
H(r z)= HO%Jl(Kr)éz(r)e_“Olz.

H.(r,0) =0. (6)
Second, H., at the center of the z = 0 plane is equal to the
magnetic field intensity at the central region:

H,(0,0) = H,. (7)
Third, the magnetic fluxes passing through the following
surfaces should be equal: the cross section of the central

region, the semi-infinite cylindrical imaginary surface S as
shown in Fig. 2, and the annular region cross section, or

/:ﬂj:OH:(r,O)rdrdqb

=f0°ofolﬂ(r0+12—V

= 'waR rH,(r,0) drd¢.

nt+w

w
H,(r0+ 7,2) dodz

(8)

In addition to the above boundary conditions the magnetic
field vector function should follow Maxwell’s divergence
equation:

v-H=0. (9)

Inserting (3) and (4) into the above divergence equation
yields

g

dr (10)

Since the functions & and &, are continuous and well
behaved, a polynomial of order 3 was chosen for §;, and
the coefficients of this polynomial can be found from
boundary conditions (6) and (7), and (8). Then the func-
tion £, was evaluated by solving the differential equation
(10) using a numerical method.

JO(KI')
=Kmr—)[€1(r)—$z(r)]-

III. RESONANT FREQUENCY OF THE
Loor-GAP RESONATOR

In the following analysis the effects of magnetic fringing
fields are taken into account by considering uniform mag-
netic fields over a length Z + AZ, where Z is the physical
length of the resonator and AZ is an equivalent length
extension due to the magnetic fringing fields. Similarly, the
effects of the fringing electric fields in the gap area are
accounted for by considering uniform electric fields over a
gap width of W+ AW, where W is the physical width of
the gap and AW is an equivalent gap width extension due
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Fig. 3. Integral contour for application of Ampere’s law on the gap.

to the electric fringing fields. Expressions for AZ and AW
will be derived later in this section.

With the above considerations, application of Ampere’s
law on the closed contour C in Fig. 3 yields

(Z+AZ)(Hy+ Hy) = jogoEo(W+AW)Z (11)

where «, is the angular frequency and H, and Hy are the
magnetic field intensities of the central and annular re-
gions, respectively. It should be noted that the radially
directed segment of contour C in the evanescent region
and the magnetic field along these segments are consid-
ered to be zero. Applying the equivalence of electric and
magnetic stored energies at resonance’ gives

%eofl[onzdv=%uofifH(fdv+%pofl_/}./Hszdv (12)

where V, is the volume in the gap, V, is the volume of the
central region, and ¥, is the volume of the annular region.

Because of small skin depth, the energy stored in con-
ductors is neglected. Expansion of (12) gives

1 1
SRoHITIE(Z + AZ)+ - o Him [R2=(r,+ W)Y

1
A(Z+AZ) = EeOEg(W+ AWz, (13)

The fringing field energy at the gap at both ends of the
cylinder is neglected because most of the energy is con-
fined within the gap along the z direction.

The equivalence of magnetic fluxes over the central
region and the annular region cross sections is expressed in
(8); expansion of the first and third parts of this equation
yiélds

(14)
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Combining (1), (13), and (14), an expression for the reso-
nant frequency is obtained:

v B 0
= —/1+
o 2ar, ¥V oW \/ R~ (r,+W)?

where v is the velocity of light in free space.

A. Calculation of AZ

The magnetic energy stored in both the central and the
annular region of the resonator with uniform fields and the
length of AZ can be found using equation (14):

2
.
1+ ——

— | AZ.
R*—(ry+ W)2

1
W, = 5!-‘0'7”‘021'102 (16)

The stored magnetic fringing field energies in the z and r
directions, Wy and Wy, are determined from the field
distribution equations (3) and (4) to be

1

1
Wi, = SporHy— ["WR(Kr)&(r)dr . (17)
2 “ag Yo :

Wy

”

1 dm R :
= harHy s [k E(r) dr. (18)

The total magnetic fringing field energy at both ends of

the resonator is
W, =2(Wy + Wy ). (19)

Combining (16), (17), and (19) gives

o [ i+ (2 [Frkngio sl

AZ=
ri(1+p)ag,

(20)

B. Calculation of AW
Consider the gap as a lumped capacitor (Fig. 4(a)) which
consists of a uniform parallel plate and a fringing capaci-
tance. From the definition of AW above, the fringing
capacitance, G, is
e AWZ
(AP

(21)

The curved shape of this capacitor can be transformed into
the simpler coplanar capacitor shape of Fig. 4(b) by a

conformal trapsformation [6]:
(22)

w=Inz

where z and w are complex planes associated with Fig.
4(a) and 4(b), respectively. The total fringing capacitance
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Fig. 4. Conformal mapping of the gap area cross section: (a) plane
x—y; (b) plane U~V

is then [7]
e K(y1-k2) K(1-kZ)
=— + z
T2 KR Kk @3
where
{ t
K,=— Ky=———+ (24)
70, a(ry+W)

and K is the complete elliptic integral. Combining (23)

and (21) gives
(h ! ) (L 02)
+

K(k,) K (ko)

t

AW = —
2

) (25)

IV. QuaALITY FACTOR OF THE LOOP-GAP RESONATOR

Power loss on the conductor surfaces of a resonator is
generally given by [8]

2;5 [ fiHards

where H,,, is the tangential component of the magnetic
field intensity on the surfaces, o is the surface conductiv-

P = (26)
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ity, and &, is the skin depth. Considering the magnetic
field distribution derived in Section II, the total ohmic
losses on the surfaces of the resonator are formulated as
follows:

» 1
L 206,

Z 2w Z (2m
rHZdo dz + r+WYHZ2dodz
[ [ g dsaz s [ [0 s wm;

+L%ﬁmﬁw¢+yjf%m¢wwwlun

In the above equation the first term represents losses on
the inner wall of the loop, the second term for the outer
wall of the loop. The third term shows losses on the inner
wall of the shield, and the fourth term corresponds to the
losses due to fringing magnetic fields on the inner wall of
the shield. The ohmic losses at both end surfaces of the
loop are neglected.

The energy stored in the resonator, W, is given by
either side of (13); then the quality factor considering only
ohmic losses on the cylindrical walls of the resonator, Qg,
is

wWs
Qs = P
L

(28)

Expanding (27) for losses and inserting into (28) gives

Ty

Qszg

1+

) Y

+o)1+—

( P)( ~ )
W R R

1+ —+—+
o o UnZr

(29)

,02

where

2
i

P R2—(ry+W)*’ (30)

If the length of the resonator, Z, is set to infinity, (28)
will reduce to the length-independent equation given in [1].
In the above derivations, the ohmic losses in the gap
(capacitor losses) are not considered; therefore quality
factors calculated by (29) are considerably higher than the
measured results. An expression for calculation of ohmic
losses in a parallel-plate capacitor is given in [9]. Modifica-
tion of this equation for the loop-gap resonator geometry
[2] gives the following equation for the gap quality factor:

1.7x10%
AW -
1+—)
w

The overall unloaded quality factor, Q,, can be found
using (29) and (31):

Qc= (31)

f3/260W2

1 1 1
- ——

: 32
Q0 Os Cc 2



MEHDIZADEH AND ISHII: ELECTROMAGNETIC FIELD ANALYSIS

TABLE [ ‘
COMPARISON OF THE RESULTS OF THEORETICAL CALCULATIONS AND
EXPERIMENTAL MEASUREMENTS FOR VARIOUS ;

LoopP-GAP RESONATORS 8

MEAS, THEORY MEAS. THEORY

Re;. % W t z R fo (MRZ)  £(MHz) Q Q
1 6.35 6.35 .2684 15.02 30.50 1083.3 1048.4 1602 1918
2 6.35 2.54 .228 19.05 17.80 i381.8 1327.9 2100 2280
3 3.17 6.35 . 280 19.25 30@.22 2222.1 2297.2 13602 1423
4 3,17 6.35 .280 1@.20 36.60 2817.2 2855.8 1725 1850
5 2.36 2.34 .254 9.52 1.8 3699.0 3641.2 1680 1724
6 1.58 .8@ 33 3.98 5.08 8877.9 9163.9 725 790
7 189 1,27 339 3.98 5.08 10356.2  10786.2 556 625

All dimensions are in miilimeters.

V. THEORETICAL VERSUS EXPERIMENTAL RESULTS

Calculations of the resonant frequency and the quality
factor for a given resonator were performed by numerical
calculations of AZ and AW using (20) and (25) and
substitution of the result into (15) for the resonant fre-
quency and into (29) and (31) for the quality factor. Table
I shows results of calculations and measurements for seven
resonators with resonant frequencies ranging from 1 to 10
GHz. It should be noted that the resonant frequency is
very sensitive to the gap distance; therefore limitations on
precision of manufacturing and measurement of the gap
distance creaie an uncertainty in the comparison of mea-
sured and calculated values, which in the case of this work
can be as high as 3 percent.

VI. CONCLUSIONS

A method for the electromagnetic field analysis of a
loop-gap resonator was developed where both electric and
magnetic fringing fields are taken into account. For mag-
netic fields, the TE evanescent modes are matched to the
internal fields of the resonator by a numerical fitting
method, and for electric fields, the conformal mapping
method is used. The results of this field analysis were used
in deriving equations for the resonant frequency and the
quality factor. Good agreement between theoretical and
experimental results was obtained.

VIL

1) To the authors’” knowledge, no exact solution of the
electromagnetic fields of the loop-gap resonator exists to
date. Therefore approximate solutions [1] and [2] were
used as starting points of the analysis.

2) Due to geometrical constraints of the practical res-
onator, only the TE;, mode used in this analysis is mean-
ingful. '

3) If the gap is large, the rotational symmetry is per-
turbed by the gap and the condition in (6) is affected. For
the small-gap condition considered here, the perturbation
effect is negligible.

4) The present analysis produces results which agree
with measurements. An alternative theoretical approach

DiscussioN
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involves using a suitable - variational formula where
the perturbation field due to the gap is approximated
by a linear combination of known functions and the
Rayleigh—Ritz method [10].
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